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Abstract

Selective brain responses to objects arise within a few hundreds of milliseconds of neural

processing, suggesting that visual object recognition is mediated by rapid feed-forward acti-

vations. Yet disruption of neural responses in early visual cortex beyond feed-forward pro-

cessing stages affects object recognition performance. Here, we unite these discrepant

findings by reporting that object recognition involves enhanced feedback activity (recurrent

processing within early visual cortex) when target objects are embedded in natural scenes

that are characterized by high complexity. Human participants performed an animal target

detection task on natural scenes with low, medium or high complexity as determined by a

computational model of low-level contrast statistics. Three converging lines of evidence indi-

cate that feedback was selectively enhanced for high complexity scenes. First, functional

magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for tar-

get objects in scenes with high, but not low or medium complexity. Second, event-related

potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages

of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behav-

ioral performance for high complexity scenes deteriorated when participants were pressed

for time and thus less able to incorporate the feedback activity. Modeling of the reaction time

distributions using drift diffusion revealed that object information accumulated more slowly

for high complexity scenes, with evidence accumulation being coupled to trial-to-trial varia-

tion in the EEG feedback response. Together, these results suggest that while feed-forward

activity may suffice to recognize isolated objects, the brain employs recurrent processing

more adaptively in naturalistic settings, using minimal feedback for simple scenes and

increasing feedback for complex scenes.
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Author summary

How much neural processing is required to detect objects of interest in natural scenes?

The speed and efficiency of object recognition suggests that fast feed-forward buildup of

perceptual activity is sufficient. However, there is also evidence that disruption of visual

processing beyond feed-forward stages leads to decreased object detection performance.

Our study resolves this discrepancy by identifying scene complexity as a driver of recur-

rent activity. We show that recurrent activity is enhanced for complex, cluttered scenes

compared to simple, well-organized scenes. Moreover, recurrent activity reflects the

amount of accumulated evidence for target object presence. These findings elucidate the

neural processes underlying perceptual decision-making by demonstrating that the

brain dynamically directs neural resources based on the complexity of real-world visual

inputs.

Introduction

Object recognition is often regarded as a task that is solved in the first wave of visual

processing [1]. The human brain indeed recognizes objects at astonishing speed, with

single neurons exhibiting object-selectivity from 100 ms after stimulus onset [2], and global

brain signals diverging within 100–200 ms [3,4]. Furthermore, hierarchical feed-forward

models can emulate human object recognition performance [5,6], and neural representa-

tions in human and non-human primate brains match those in feed-forward neural net-

works [7–9].

However, the visual system is not a strict feed-forward hierarchy: it also contains an abun-

dance of feedback connections [10–13]. Visual response modulations that occur within visual

cortex after the initial feed-forward sweep has passed (i.e. beyond ~150 ms after stimulus

onset) are thought to reflect recurrent interactions (‘feedback’) between e.g. V1-IT that aid seg-

mentation of figures from backgrounds [14–19] and perceptual grouping [20]. One way in

which feedback is thought to facilitate object recognition is through visual routines such as

curve tracing and texture segmentation, to integrate line segments and other low-level features

encoded in early visual areas [21–23]. Supporting this model of visual processing, transcranial

stimulation evidence shows that detection of target objects in natural scenes deteriorates when

neural activity in early visual cortex is disrupted not just at feed-forward processing stages

(e.g., 100 ms after stimulus onset), but also at feedback stages (e.g., 220 ms after stimulus onset

[24,25]).

How can we reconcile the speed of object recognition with an important role for feedback?

Two lines of evidence suggest that feedback may be employed adaptively depending on the

complexity of the visual input. First, computer simulations indicate that disrupting feedback

activity has stronger effects for occluded or degraded target objects [26]. Second, backward

masking, which interrupts recurrent processing [27–29], has weaker effects for scenes with tar-

get objects that are “easily segregated” compared to “more demanding backgrounds”, as

assessed through behavioral ratings of independent observers [30]. But how does the visual

system determine the complexity of a visual input scene? Computer vision and scene percep-

tion research shows that computational summary statistics of low-level image features are

diagnostic of scene complexity [31–33]. For example, contrast distributions can be
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summarized by two statistics that reflect a scene’s contrast energy (CE, average contrast) and

spatial coherence (SC, variability in contrast across the scene) [34,35]. Computing these statis-

tics for a large set of scenes results in a two-dimensional space in which sparse scenes with just

a few scene elements separate from complex scenes with a lot of clutter and a high degree of

fragmentation (Fig 1A). Since CE and SC appear to provide information about the ‘segment-

ability’ of a scene, we hypothesized that the visual system computes these scene statistics as a

measure of overall scene complexity, with the goal to determine a need for enhanced visual

processing mediated by feedback.

Importantly, for this hypothesis to be biologically realistic, CE and SC need to be a) plausi-

bly computable in the visual system and b) available early in visual processing. The contrast

distribution of a scene can in theory be deduced from the population response of contrast-sen-

sitive neurons, e.g. neurons in early visual areas such as LGN and V1, which respond to local

scene elements (edges). Since these responses constitute the first stage of the feedforward pro-

cessing cascade, this information can be made available very early on in visual processing

through a ‘read-out’ of the early population response across the visual scene within the feed-

forward sweep. Consistent with this idea, CE and SC values computed from simulated early

visual contrast responses [35,36] have been shown to modulate the magnitude of single-trial

evoked responses to natural scenes as early as 100 ms after stimulus onset [35,37–42].

Here, we tested whether scene complexity predicts the degree of feedback activity by mea-

suring brain responses while participants performed a target object detection task in scenes

that were systematically sampled to contain either low, medium or high CE and SC values (see

Fig 1B and 1C). First, we measured whole-brain fMRI responses to target objects in scenes

with low, medium or high complexity (Experiment 1). Next, we measured EEG responses to

the same stimuli to examine the time-course of visually evoked activity (Experiment 2). Impor-

tantly, complexity was matched for target and non-target scenes within each complexity condi-

tion, allowing us to disambiguate any feedforward response differences due to scene

complexity from subsequent feedback modulations by examining differential responses to tar-

get and non-targets. In addition, scene complexity was varied on a trial-by-trial basis, such

that participants could not form an expectation of scene complexity beforehand, allowing us to

measure responses with unbiased feed-forward processing (i.e. without a difference in top-

down task set or attentional state).

Together, these experiments show that successful detection of target objects in high, but not

low or medium complexity scenes is associated with enhanced activity in early visual areas (in

fMRI) which emerges at feedback time-points in visual processing (in EEG). Moreover, behav-

ioral performance for high complexity scenes was associated with decreased accuracy and

slower response times, reflecting a slower rate of evidence accumulation as formalized by the

drift rate parameter in the drift-diffusion model [43–45]. In addition, trial-by-trial variations

in drift rate within the high complexity condition were coupled to EEG feedback responses on

those trials. Together, these results demonstrate a contribution of feedback to object detection

in complex natural scenes.

Results

Experiment 1 (fMRI)

Behavior. In Experiment 1, participants viewed images of real-world scenes with low,

medium or high complexity in the MRI scanner. On each trial, they indicated via a button

press whether the scene contained a target object (animal) or not (Fig 1D). This detection

task was embedded in a stop-signal paradigm, but for the purpose of this study, only the trials

without a stop signal (‘go trials’) were analyzed (see Materials and methods). Behavioral
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Fig 1. Stimuli and experimental paradigms. A) Stimulus space described by two parameters derived from the distribution of local contrast,

contrast energy (CE) and spatial coherence (SC). In this space, simple images containing one or a few easily segmentable objects are on the

lower left, while complex images with a high degree of fragmentation are on the upper right. Thumbnails show 100 images (50 animal, 50 non-

animal) randomly drawn from the larger image set from which the stimuli were selected. B) Image statistics of the stimuli: each point represents

a scene sampled from the image space described in A). Scenes had either low (red), medium (green) or high (blue) CE and SC values. Within

these conditions, CE and SC values were matched between scenes with target objects (animals: “A”, filled dots) and without target objects (non-

Scene complexity affects object detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006690 December 31, 2018 4 / 28

https://doi.org/10.1371/journal.pcbi.1006690


performance for each condition is presented in Fig 2. Reaction times were found to increase

gradually with scene complexity (F(2,44) = 4.96, p = 0.011, η2 = 0.18). Planned post-hoc com-

parisons showed that RTs increased for the HIGH complexity condition compared to the

LOW (t(22) = 2.7, p(Sidák-corrected) = 0.035), and the MEDIUM condition (t(22) = 2.5, p

(Sidák-corrected) = 0.057), with no significant difference between the LOW and MEDIUM

conditions (t(22) = 0.7, p(Sidák-corrected) = 0.85; Fig 2A).

Response accuracy was also modulated by scene complexity (F(2,44) = 8.37, p = 0.001, η2 =

0.28). Post-hoc comparisons showed the best performance for the MEDIUM condition com-

pared to the LOW (t(22) = 3.5, p(Sidák-corrected) = 0.007) and HIGH condition (t(22) = 3.2,

p(Sidák-corrected) = 0.012), with no differences between the LOW and HIGH conditions (t

(22) = 0.8, p(Sidák-corrected) = 0.77; Fig 2B).

Together, these results indicate that the high scene complexity leads to significant slowing

in object detection. Although response accuracy in both the LOW and HIGH condition was

worse than for the MEDIUM condition, responses were only slowed for HIGH complexity

scenes, suggesting that the HIGH condition was experienced as most difficult.

fMRI results: Whole brain analysis. Whole-brain comparisons of target-present (animal)

vs. target-absent (non-animal) scenes revealed significant clusters in lateral and ventral high-

level visual cortex (Fig 3). For the animal > non-animal contrast (Fig 3A), bilateral clusters

overlying lateral occipital cortex were found in all conditions. Critically, in the HIGH condi-

tion, additional differential activity was found in low-level visual areas. Indeed, contrasting

these statistical maps between conditions revealed a large cluster in several early visual areas

(Fig 3B) and smaller clusters in inferior parietal regions. For the non-animal > animal contrast

(Fig 3C), bilateral clusters in parahippocampal cortex were found in the MEDIUM condition,

while in the LOW and HIGH condition, only right-lateralized clusters survived whole-brain

cluster-correction. Contrasting the difference between non-animal > animal scenes between

conditions resulted in no significant clusters. Cluster coordinates for all contrasts are reported

in Table 1.

fMRI results: ROI analysis. Following the whole brain analysis, the difference in BOLD

activity for animal vs. non-animal scenes in each condition was computed in four a priori,
independently defined regions of interest and compared across conditions using repeated-

measures ANOVAs. In line with the whole brain results, scene complexity was found to modu-

late activity in early visual cortex (V1: (F(2,44) = 4.9, p = 0.01, η2 = 0.18; Fig 3A). Planned post-

hoc comparisons indicated that this effect was driven by increased activity for animal vs. non-

animal scenes in the HIGH compared with the MEDIUM condition (t(22) = 2.6, p(Sidák-cor-

rected) = 0.05) and a trend towards increased differential activity in the HIGH versus the

LOW condition (t(22) = 2.3, p(Sidák-corrected) = 0.09), with no difference between LOW and

MEDIUM conditions (t(22) = 1.2, p(Sidák-corrected) = 0.54).

In addition, one-sample t-tests conducted for each of the three conditions indicated that

the differential activity in V1 significantly deviated from zero only in the HIGH condition

(HIGH: t(22) = 2.8, p(Sidák-corrected) = 0.03; LOW: t(22) = 0.19, p(Sidák-corrected) = 0.99;

MEDIUM: t(22) = -1.28, p(Sidák-corrected) = 0.52).

We also observed a main effect of scene complexity in place-selective PPA (F(2,44) = 3.6,

p = 0.04, η2 = 0.14 (Fig 4B), which exhibited stronger responses for non-animal than animal

animals: “NA”, open dots). C) Exemplars from each stimulus complexity condition. D) Experimental design of Experiment 1 (fMRI). On GO

trials, subjects indicated whether the scene contained a target object or not. On STOP trials, an auditory signal followed stimulus presentation

after a variable inter-trial-interval (ITI), signaling that subjects had to withhold their response. Only GO trials were analyzed. E) Experimental

design of Experiment 2 (EEG). Participants were instructed to respond as fast as possible on speed trials and as accurate as possible on accuracy

trials and received feedback on each trial.

https://doi.org/10.1371/journal.pcbi.1006690.g001
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scenes. Planned post-hoc comparisons indicated a trend towards less differential activity for

the HIGH compared with the MEDIUM (t(22) = 2.4, p(Sidák-corrected) = 0.07), but not the

LOW condition (t(22) = 1.9, p(Sidák-corrected) = 0.19), and no difference between the LOW

and HIGH conditions (t t(22) = 0.7, p(Sidák-corrected) = 0.89). In contrast, object-selective

Fig 2. Behavioral results of the fMRI experiment (Experiment 1). A) Average reaction times (RT) for the animal/

non-animal categorization task per condition. B) Accuracy (percentage correct) per condition. Horizontal black lines

indicate the statistical outcome of one-way repeated-measures ANOVAs; gray lines indicate the results of pairwise tests

corrected for multiple comparisons using a Sidák correction. Error bars represent S.E.M. � = p< 0.05, # = p< 0.10.

https://doi.org/10.1371/journal.pcbi.1006690.g002

Fig 3. Whole brain fMRI results. A) Statistical parametric maps for the animal (A)> non-animal (NA) contrast for each condition. From left to right,

MNI coordinates for each transversal slice are z = [10, 2, –6]. B) Statistical parametric maps for the non-animal> animal contrast for each condition.

From left to right, MNI coordinates are z = [–2, –8, –14]. C) Differences in the differential animal vs. non-animal activity between conditions. MNI-

coordinates: [x = 6, y = -88, z = 6]. Maps were cluster-corrected and thresholded at z = 2.3. Color scales range from z = 2.5 to 5 (A and B) and z = 2.3 to

3.5 (C).

https://doi.org/10.1371/journal.pcbi.1006690.g003
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LOC and face-selective FFA both responded more positively to scenes with animals than to

scenes without animals (Fig 4C and 4D), but these responses did not differ across conditions

(FFA: F(2,44) = 1.7, p = 0.19, η2 = 0.07; LOC: F(2,42) = 1.9, p = 0.14, η2 = 0.08).

Summary Experiment 1. In sum, behavioral detection of target objects (animals) in natu-

ral scenes was slower and less accurate for scenes of increased complexity. The presence of a

target object was associated with an enhanced fMRI response in known object- and face-selec-

tive regions, but these responses were not significantly modulated by scene complexity. In con-

trast, scene complexity modulated activity levels in V1 and scene-selective PPA. In PPA,

differential activity related to target-presence was least pronounced for the high complexity

scenes compared to the medium complexity scenes, while V1 activity was only modulated by

target presence for high complexity scenes. Taken together, these results indicate that scenes

with high complexity induced the least difference in PPA while giving rise to additional differ-

ential activity in early visual areas.

These fMRI results suggest that information encoded in early visual cortex may be selec-

tively recruited during target detection for the most difficult, high complexity scenes. Since the

scenes were carefully matched in CE and SC within complexity levels, it is unlikely that this

activity was driven by differences in low-level properties between target and non-target scenes

evoked by feed-forward processing. Therefore, we hypothesized that the differential V1 early

visual activity results from increased recurrent activity elicited by a need for additional visual

processing to detect the target object in high complexity scenes.

However, two limitations preclude a strong confirmation of this hypothesis. First, due to

the poor temporal resolution of the fMRI signal, we cannot exclude the possibility that early

visual activity differences were present as a result of other differences between the target and

non-target scenes than those captured by CE and SC. Second, the categorization task was

embedded in a stop-signal paradigm (see Materials and methods). Although all results

reported above were based on GO trials only (i.e. omitting all trials in which a stop signal was

presented), the observed effects could be specific to, or amplified by, an expectation of a stop

Table 1. Whole brain fMRI analysis cluster coordinates for the significant contrasts. COG = center of gravity, p = p-value, lat. = lateral, occ. = occipital, temp. = tempo-

ral, inf. = inferior, post. = posterior, L = left, R = right. Coordinates are reported in MNI space. Areas included in the clusters were determined by determining overlap of

local maxima within clusters with the probability maps of the Juelich Histological Atlas and the Harvard-Oxford Cortical Structural Atlas implemented in FSL. Note that

for the contrasts HIGH (animal—non-animal), MED (non-animal—animal) and [HIGH (animal-non-animal)—MED (animal- non-animal)], the clusters are bilateral,

forming one cluster across hemispheres (see also Fig 3).

contrast size (mm3) log10 (p) x y z areas included

animal > non-animal

LOW 43656 15.6 45 -66 -9 V4, V5, lat. occ. cortex. inf. division, inf. temp. gyrus, temp. occ. fusiform. gyrus (R)

43472 15.6 -41 -71 -8 V4, V5, lat. occ. cortex. inf. division, inf. temp. gyrus, temp. occ. fusiform. gyrus (L)

MED 39296 15.7 45 -70 -6 V4, V3v, lat. occ. cortex. inf. division, inf. temp. gyrus, temp. occ. fusiform. gyrus, occ. fusiform gyrus (R)

39976 15.9 -42 -74 -6 V4, V5, lat. occ. cortex. inf. division, inf. temp. gyrus, temp. occ. fusiform. gyrus. (L)

HIGH 142168 36.1 3 -74 -3 V1, V2, V3, V4, V5, lat. occ. cortex. inf. division, inf. temp. gyrus, temp. occ. fusiform. gyrus. (L+R).

non-animal> animal

LOW 4585 1.96 27 -45 -9 parahippocampal gyrus post. div., lingual gyrus, temp. occ fusiform cortex (R)

MED 29872 5.78 4 49 2 parahippocampal gyrus post. div., lingual gyrus, temp. occ. fusiform cortex, supracalcarine cortex, precuneus

(L+R)

HIGH 4392 1.81 26 -47 -1 parahippocampal gyrus post. div. lingual gyrus, temp. occ. fusiform cortex. supracalcarine cortex, precuneus

(R)

animal > non-animal, between conditions

HIGH > MED 14536 6.32 7 -85 -2 V1, V2, V3V, V4, occ. fusiform gyrus, lingual gyrus (R).

7992 3.61 -15 -95 19 V1, V2, V3V, inf. parietal lobule, occ. fusiform gyrus, lingual gyrus (R)

HIGH > LOW 21016 8.94 2 -90 4 V1, V2, V3V, inf. parietal lobule, lingual gyrus, (L+R)

https://doi.org/10.1371/journal.pcbi.1006690.t001

Scene complexity affects object detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006690 December 31, 2018 7 / 28

https://doi.org/10.1371/journal.pcbi.1006690.t001
https://doi.org/10.1371/journal.pcbi.1006690


instruction, and might not generalize to a task in which participants are never asked to with-

hold their response.

To overcome these two limitations, we conducted a second experiment, in which we

recorded EEG while participants performed the same animal detection task on the same set of

scenes without any stop-signal manipulation. First, to test our hypothesis that the activity differ-

ences in early visual areas were feedback-related, we computed event-related potentials (ERPs)

for target and non-target scenes separately in each condition, to infer when in time neural

responses started to differ on electrodes overlying early visual cortex. Since scenes were matched

Fig 4. fMRI ROI analysis results. Differential activity for animal vs. non-animal scenes for each condition in A) V1,

B) PPA, C) LOC and D) FFA. Horizontal black lines indicate the statistical outcome of repeated-measures ANOVAs;

gray lines indicate the results of pairwise tests corrected for multiple comparisons using a Sidák correction.
� = p< 0.05, # = p< 0.10. Error bars represent S.E.M.

https://doi.org/10.1371/journal.pcbi.1006690.g004
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in image statistics, we predicted that there would be no differences between animal and non-

animal scenes in feedforward responses, i.e. before ~150 ms after stimulus onset, after which

ERP responses are thought to start reflecting recurrent activity [23,28,46]. Second, because

behavioral performance for high complexity scenes in Experiment 1 was characterized by slo-

wed RTs with no substantial improvements in detection accuracy, the behavioral task in the

EEG experiment was divided into blocks with a task instruction to emphasize either ‘speed’ or

‘accuracy’ (Fig 1E). We hypothesized that if target detection in high complexity scenes was

indeed associated with increased feedback, performance in the HIGH condition should be most

affected for speeded trials, in which extensive visual processing is limited by time constraints.

Experiment 2 (EEG)

Behavior and HDDM parameters. Fig 5 shows an overview of the behavioral results in

Experiment 2. Analysis of the reaction times showed a significant main effect for instruction

(speed or accurate; F(1,25) = 87.6, p< 0.001, η2par = 0.78), and scene complexity (LOW,

MEDIUM, or HIGH; F(2,50) = 29.1, p< 0.001, η2par = 0.54). As expected, participants

responded faster under speed instructions, and response times were again longest for the high

complexity scenes. Planned post-hoc comparisons further showed that responses were signifi-

cantly slower for high compared with medium complexity scenes under both instructions

(speed: t(25) = 5.0, p< 0.001; accurate: t(25) = 5.1, p =< 0.001; all Sidák-corrected; Fig 5A).

Compared to low complexity scenes, responses in the high complexity condition were signifi-

cantly slower for accurate task instructions (t(25) = 4.9, p> 0.001), while showing a similar

trend for the speed instruction (t(25) = 2.7, p = 0.065; all Sidák-corrected). Response times did

not differ between low and medium conditions (speed: t(25) = 2.4, p = 0.13; accurate: t(25) =

0.72, p = 0.98; all Sidák-corrected).

Accuracy scores showed a significant interaction between scene complexity and task-

instruction (F(2,50) = 5.6, p = 0.002, η2par = 0.18). That is, detection accuracy was selectively

decreased for highly complex scenes when participants were motivated to respond as fast as

possible (HIGH vs. LOW, t(25) = 3.2, p = 0.024; HIGH vs. MEDIUM, t(25) = 4.4, p = 0.001;

LOW vs. MEDIUM, t(25) = 1.98, p = 0.38, all Sidák-corrected). This effect was not found for

trials in which participants were asked to be as accurate as possible (HIGH vs. LOW; t(25) =

1.5, p = 0.60; HIGH vs. MEDIUM, t(25) = 1.8, p = 0.42; LOW vs. MEDIUM: t(25) = 0.1,

p = 0.99, all Sidák-corrected; Fig 5B).

In summary, these results indicate increased reaction times for high complexity scenes both

when participants are pressed for time (speed trials), or when asked to make the most accurate

response (accurate trials). However, detection accuracy is decreased only when participants

are pressed for time (Fig 5B). This suggests that for high complexity scenes, visual information

processing might be too slow to benefit detection, especially when participants are motivated

to respond quickly and thus should have lower evidence requirements in comparison to accu-

rate instruction trials.

To formally support this assumption, we modeled the RT and detection accuracy data with

a hierarchical implementation of the drift diffusion model (HDDM), which details how latent

parameters describing the speed of sensory information accumulation (drift rate) and evidence

requirements (boundary) each contribute to reaction times and response accuracy [44,45,47].

We found that drift rate was signficantly modulated across the three scene complexity condi-

tions (F(2,50) = 12.5, p<0.001, η2par = 0.33), with the slowest rate of information accumulation

for high complexity scenes (HIGH vs. LOW; t(25) = 2.97, p = 0.02; HIGH vs. MEDIUM, t(25)

= 5.04, p< 0.001; LOW vs. MEDIUM: t(25) = 2.05, p = 0.15, all Sidák-corrected; Fig 5C). In

contrast, the boundary only varied as a function of task instructions (F(1,25) = 93.5, p<0.001,
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η2par = 0.79), and was not modulated by scene complexity (F(2,50) = 1.3, p = 0.22, η2par =

0.05), and there was no interaction (F(2,50) = 2.5, p = 0.10, η2par = 0.09; Fig 5D). This suggests

that RTs and error rates are increased in the HIGH condition because information accumula-

tion is slowed, but not because the requirements to reach a decision are changed.

Together, the behavioral results of Experiment 2 again indicated increased reaction times

for high complexity scenes relative to less complex scenes. In addition, they revealed a slower

rate of information processing (drift rate) for high complexity scenes, resulting in a selective

decrease in performance when the decision is speeded.

Grand-average ERP results. To investigate the time-course of object detection in visual

cortex, evoked responses to the target and non-target scenes were pooled across a set of occipi-

tal and peri-occipital electrodes (see Materials and methods). The results in Fig 6 show that

Fig 5. Behavioral and HDDM modeling results of the EEG experiment (Experiment 2). A) Average reaction times

(RT) per condition and task instruction. B) Accuracy (percentage correct) per condition and task instruction. C)

Estimates of drift rates per condition, indicating slower evidence accumulation for high complexity scenes. D)

Estimates of the amount of evidence required (boundary) per condition and task instruction. Gray lines indicate the

results of pairwise post-hoc tests between conditions corrected for multiple comparisons using a Sidák correction.

Error bars represent S.E.M. � = p< 0.05.

https://doi.org/10.1371/journal.pcbi.1006690.g005
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Fig 6. ERP results from the EEG experiment (Experiment 2). Average ERP amplitude for animal (solid lines) and

non-animal scenes (dashed lines) per condition for an occipital-peri-occipital cluster of EEG channels (Oz, POz, O1,

O2, PO3, PO4, PO7, PO8) for the A) speed and B) accuracy trials. Shaded regions indicate SEM across participants.

Significant differences between animal and non-animal ERPs (FDR-corrected) are indicated with thick black lines

(also in C/D). C-D Animal vs. non-animal difference wave for each condition overlaid and statistically compared

(FDR-corrected) for the speed A) and accuracy B) trials. Thick lines at the bottom of the graphs indicate significant

difference wave deflections from zero, and shadings indicate S.E.M. Symbol markers indicate significant differences in

difference wave amplitude between conditions, blue asterisk: HIGH vs. LOW; blue plus: HIGH vs. MEDIUM; green

plus: MEDIUM vs. LOW.

https://doi.org/10.1371/journal.pcbi.1006690.g006
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target and non-target ERPs before 150 ms were highly overlapping in all three conditions

(although the ERPs diverged for a few time-points before 150 ms in the LOW condition). Crit-

ically, target and non-target ERPs in the HIGH condition only started to diverge from ~220

ms, suggesting a contribution of recurrent processing to target detection in high complexity

scenes. These effects were consistent across the speed (Fig 6A) and accuracy trials (Fig 6B).

Statistical comparisons (FDR-corrected across all time-points, task-instructions and condi-

tions) of the animal vs non-animal difference waves indicated that for speeded trials, the differ-

ence wave in the HIGH condition did not diverge from zero before prior to 220 ms (Fig 6C,

blue solid line); in the accuracy trials, there was a brief interval of significant deflection before

200 ms (Fig 6D), but this reflected a reversed difference wave compared to the other two con-

ditions. Beyond 220 ms, however, this pattern reversed: direct comparison of the difference

wave across conditions indicated that the difference wave for the HIGH condition after 220

ms was significantly enhanced compared to the LOW (blue asterisks; top) and MEDIUM

(blue plusses; top) conditions.

To exclude the possibility that the differential effects in HIGH simply reflected the absence

of any object information in non-target trials, we repeated these analyses while restricting the

non-animal trials to only those images that contained large, non-animal distractor objects

(vehicles, humans and man-made objects). The results of this analysis were qualitatively simi-

lar (see S1 Fig), suggesting that these differential responses were not driven by the absence of

distractor objects for non-animal trials.

The deviating shape of the difference wave in the HIGH condition relative to the other two

conditions has two important implications. First, the lack of a reliable early (< 150 ms) differ-

ence wave in the HIGH condition indicates that it is unlikely that the differential fMRI activity

in early visual areas found in Experiment 1 was driven by uncontrolled low-level image prop-

erties. Such properties are expected to elicit a difference in feed-forward responses, and thus

an early difference in ERP responses. Instead, the strongly enhanced ERP difference beyond

220 ms in the HIGH condition suggests this to be the electrophysiological correlate of the dif-

ferences in the early visual fMRI response.

Second, the late onset of the target vs. non-target distinction for HIGH provides a potential

neural explanation for the decreased behavioral performance for these scenes. As shown in Fig

5, high scene complexity was associated with slower reaction times and lower drift rates, as

well as decreased accuracy during speeded trials, because participants commit to a choice with

less evidence on those trials (lower boundary; Fig 5D). The ERP results suggest that in the

HIGH condition, participants relied on differential activity emerging at recurrent stages of

visual processing (beyond 220 ms), which may be less accessible under time pressure (speeded

trials). Thus, these observations suggest the rate of evidence accumulation for highly complex

scenes was slowed due to enhanced recurrent processing. We examined this relation more

closely in the next section, by comparing ERPs and behavioral performance at the single-trial

level.

Relating ERPs to behavior. To assess whether EEG activity beyond 200 ms was indeed

indicative of the accumulation of evidence for the target/non-target decision, we investigated

the relation between ERP responses and drift rate using trial-by-trial analysis. We again fitted

a HDDM model [45,48,49] to the RT distributions for target and non-target decisions in

LOW, MED and HIGH, now including the single-trial ERP amplitude as a predictor (HDDM

regression; see Materials and methods). Instead of estimating one drift rate per subject across

trials, this model assumes the drift rate to vary on each trial according to a linear relation with

their measured EEG activity. Since our behavioral analysis did not indicate an effect of task

instruction on drift rates, we estimated this model across all trials (i.e., both speed and accu-

rate) simultaneously. The results show that drift rates were indeed modulated significantly by
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trial-by-trial differences in late ERP amplitude (220–325 ms; Fig 7). The regression weight is

negative, indicating that higher ERP amplitude in that interval reflects lower drift rates, consis-

tent with our interpretation that slower evidence accumulation is associated with increased

feedback processing. The regression weight was significantly different from zero in all condi-

tions (all p = 0.0); however, it was significantly larger for HIGH relative to both LOW (p = 0.0)

and MED (p = 0.0008) trials, whose regression weights did not differ from one another

(p = 0.11). These results thus provide further support that late ERP activity (presumably

reflecting recurrent interactions) reflects a relatively slowed accumulation of evidence for the

target/non-target decision for scenes with high complexity.

Summary Experiment 2. The differential ERP response indicating target presence in the

HIGH, but not the LOW and MEDIUM conditions emerged after 200 ms, suggesting that it

does not reflect a feed-forward signal, but recurrent processing. Moreover, this feedback

response reflected a slower rate of evidence accumulation at the single-trial level. While feed-

back activity was present for all trials (speeded or accurate), behavioral performance was only

impaired during speeded trials. Because evidence requirements were lower during speed trials

(Fig 5D), we reason that the feedback activity during those trials, while present, did not benefit

Fig 7. HDDM regression results. Posterior probabilities of the regression weight for drift rate (v) on the single-trial

ERP amplitude averaged between 220–325 ms after stimulus onset for LOW, MED and HIGH complexity.

https://doi.org/10.1371/journal.pcbi.1006690.g007
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task performance, because participants lacked sufficient time to incorporate the accumulating

evidence into a behavioral response.

Discussion

We investigated the influence of scene complexity on the detection of target objects in natural

scenes using fMRI, EEG and behavior. Behaviorally, we observed prolonged detection times

when participants viewed high compared with low or medium complexity scenes. Using fMRI,

we found these slower responses to be accompanied by a selective increase in activity for target

objects in early visual regions including V1, while target activity in higher-level object-selective

cortex was not affected by scene complexity. EEG recordings showed that the differential

response to targets and non-targets in early visual cortex arose after ~220 ms, suggesting it is

likely driven by feedback/recurrent interactions, rather than feed-forward activity differences.

While increased feedback for target objects in high complexity scenes was observed for both

fast and accurate task instructions, behavioral performance only profited from this activity

when the instructions emphasized accuracy, and so encouraged participants to wait for evi-

dence accumulated via feedback.

We interpret these findings as showing a selective need for increased detailed visual analysis

of high complexity scenes. For simple scenes, the initial, coarse representation provided by the

feed-forward sweep is enough to obtain information about the presence of a target object. For

complex scenes, however, the feed-forward sweep is not sufficiently informative: it merely sig-

nals that there is a lot of ‘stuff’ in the scene, and detecting the target object requires additional

processing.

Global-to-local processing and attention

This interpretation is consistent with the global-to-local processing frameworks which suggest

that detailed scene analysis takes place via reentrant processing [23,50–52]. These frameworks

propose that the feed-forward sweep provides visual cortex with a base representation. If the

visual task can be solved based on this representation alone, no further operations are neces-

sary and action selection can be initiated. If it is not sufficiently informative, elemental opera-
tions are applied such as contour grouping and texture segmentation, which integrate

individual line segments and other features encoded in low-level areas via incremental group-

ing [21,22]. We believe that the differential neural response observed in our fMRI and EEG

data for targets relative to non-target scenes reflects the implementation of these elemental

operations. A psychological correlate of this feedback-driven process could be termed ‘atten-

tive processing’ while the feed-forward stage could be considered pre-attentive [53]; see [21]

for a detailed discussion. Our observation of an increased fMRI response to targets is clearly

consistent with numerous observations that attentional modulations are reflected in response

enhancements in visual cortex [54]. Importantly, however, our results suggest that this

response enhancement is selectively applied on a trial-by-trial basis to scenes which have high

complexity, as determined by scene statistics.

The impact of recurrent processing on behavior

Our behavioral observations support the presence of selectively increased feedback for com-

plex scenes in two ways. First, in Experiment 1 we observed that scene complexity influenced

response selection, but not response suppression [55–58]. Specifically, we observed that the

decision time was prolonged for complex scenes, suggesting a slower rate of information accu-

mulation. In the Experiment 2 we examined this hypothesis through the manipulation of time

restrictions. Behaviorally, we showed that while RTs were always increased for highly complex
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scenes, accuracy only declined when the instructions emphasized a speeded response. The

drift diffusion model [43,44,59] was then used to show that drift rate (the latent variable cap-

turing the rate of information accumulation) was indeed slower for highly complex scenes

[60–62]. In addition, we observed that drift rate was related to single-trial feedback-driven

ERP responses for high, but not low or medium complexity scenes. This reliance on feedback

provides an explanation for the difference in behavioral performance when participants

emphasized speed above accuracy (and thus were not able to incorporate the information pro-

vided by the feedback response). Moreover, this ERP-drift rate relation is consistent with

reports of a ‘discriminating component’ around 300 ms reflecting the amount of sensory evi-

dence for perceptual decisions on objects in phase noise [61,63]. Taken together, these obser-

vations underline the importance of feedback activity for processing complex scenes to

optimize behavioral performance.

A role for scene statistics in signaling the need for recurrent processing

We propose that the complexity of the visual input can be estimated using image statistics

derived from contrast distributions, in particular contrast energy and spatial coherence. These

statistics are potentially suitable computational substrates for such a representation because

they can be computed directly from local contrast responses in e.g. LGN [35]. These parame-

ters strongly affect the amplitude of evoked EEG activity early in time in visual processing

[35,37,64] suggesting they are indeed available at early stages of visual computation and could

therefore serve as ‘markers’ to determine whether further visual operations are necessary. This

idea is reminiscent of previous proposals suggesting that scenes are summarized as coarse

‘blobs’ that precede detailed analysis at smaller spatial scales depending on their diagnostic

value [65,66], or via low spatial frequencies that are used to direct top-down facilitation [67]. It

is also consistent with results showing that feedback is necessary to model categorization of

degraded scenes [26] and with results reported by [30], who found that masking effects were

stronger for scenes that were ‘less easily segmented’.

Here, rather than filtering, degrading or otherwise manipulating the scenes, we used

scene statistics to sample variation in scene complexity, providing a quantitative computa-

tional approach to estimate this property. We sampled scenes with low, intermediate or high

CE and SC values, assuming a linear relation between these values and scene complexity. We

note, however, that several of our results, in particular the fMRI responses in higher-order

regions and behavioral accuracy in Experiment 1, appeared to show a U-shaped, rather than

linear modulation across conditions, suggesting that CE and SC are not a straightforward

parametric index of scene complexity. In particular, while the high condition consistently

deviated from the medium condition in terms of both behavioral (higher RT, lower accu-

racy) and neural (increased differential V1 fMRI and late ERP responses) effects, the low

condition sometimes also showed a decrease in performance, but without a clear neural

correlate. Given the clear neural effects for the high condition, the main focus of this paper is

on that condition. However, a separate investigation of the U-shaped effects based on an

additional set of behavioral studies [68] shows that behavioral performance is indeed often

optimal for scenes with intermediate, rather than low, scene complexity. One potential expla-

nation for this benefit is that feed-forward processing for intermediate CE/SC scenes is faster

or more efficient due to, for example, increased familiarity with such scenes. However, inter-

mediate scenes could also contain more or better contextual cues regarding the presence of

target objects, resulting in increased interaction between scene and object processing path-

ways [69–71]. In sum, our results do not provide a clear explanation for this pattern,

and future research is needed to determine the neural underpinnings of the improved
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performance for intermediate relative to low complexity images as defined by the CE/SC

parameterization.

How does the visual system determine whether recurrent processing is

needed?

A question that remains unresolved in this study is which, if any, brain areas might be involved

in computing scene complexity, i.e. which region ‘reads out’ the scene statistics from the popu-

lation response in early visual regions. Consistent with previous studies [72,73], we found a

strong distinction between animal- and non-animal images in object-selective LOC and face-

selective FFA. However, this differential activity was not strongly modulated by whether the

object was embedded in a complex scene or a simple scene. We did observe, however, an effect

of scene complexity in PPA. While the scene-selectivity of PPA is commonly attributed to cod-

ing of 3D spatial layout [74–76] it is also sensitive to object information [77–79], as well as

low-level features such as spatial frequency, contrast, rectilinearity and texture [79–84], sug-

gesting that PPA may be a suitable region to demonstrate an influence of the broader scene

context on object-related activity [69]. Importantly, PPA is biased towards the visual periphery

[85,86], containing relatively large receptive fields [87,88] making it suited for computation of

larger-scale summary statistics of the input [89]. Consistently, a recent study found that PPA

was sensitive to difference in scene complexity as defined by various image-computable

computational measures such as image compression and self-similarity [90].

Based on this prior literature, we speculate that the enhanced recurrent processing in early

visual regions is initiated based on a feed-forward, summary statistics based computation of

scene complexity in PPA. However, future research using for example time-resolved measure-

ments of PPA activity will be necessary to confirm or deny the presence of such a representa-

tion in PPA during object detection in natural scenes.

Influence of task on target detection in complex scenes

Perceiving real-world scenes involves more than detection of objects: for example, we can rec-

ognize a scene as a specific place, or determine its navigability [91]. It is unclear whether feed-

back is ‘intrinsically’ enhanced upon perceiving a scene of high complexity regardless of

observer goal, or whether it is selectively enhanced when a participant is actively searching for

a target object in a complex scene. One way to test this is to compare the current results to a sit-

uation in which participants see scenes of varying levels of complexity while performing a task

without any object detection requirement (e.g. an orthogonal visual task at fixation, or detect-

ing a concurrent auditory signal). Such top-down task manipulations have been shown to

affect ERP responses to natural scenes in recurrent processing time windows [64], and feed-

back is thought to be involved in the application of attentional templates [92,93], which may

differ between different tasks [94] or the level of detail necessary to solve the task [66] and

therefore in the amount of feedback required. While we varied scene complexity on a trial-by-

trial basis, making it difficult for participants to use a top-down strategy to ‘predict’ how much

attention they would need to direct to solve that trial, they still needed to apply a search target

in order to solve the task. This search target was the same throughout the entire experiment

(animal), but our whole-brain fMRI analysis (Fig 3) did indicate some target-related activity

differences for high complexity scenes in posterior parietal regions, which have been associated

both with representing attentional templates as well as outcomes of attentional selection [92].

A deeper understanding of the interaction between scene complexity and top-down task

requirements and their respective representation in cortical regions requires future experi-

mental study. So far, however, our results suggest that although object recognition based on
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feed-forward information [5] may be possible for simple stimuli, detection of objects in com-

plex real-world scenes additionally involves feedback processing.

Materials and methods

Experiment 1 (fMRI)

Ethics statement. All participants provided written informed consent and were finan-

cially compensated. The experiment was approved by the ethics committee of the University

of Amsterdam.

Subjects. Twenty-five participants (7 males, age 19–26 years; mean = 21.6, SD = 1.7, nor-

mal or corrected-to-normal vision) took part in the fMRI experiment. One participant had a

median reaction time of 2 standard deviations above average as well as 7.5% non-responses

and was therefore excluded from further data analysis. Another participant was excluded

because of excessive head movement (absolute displacement of twice the voxel size caused by

multiple movements across a single experimental run).

Stimuli. Scenes were selected from a larger set of 4800 scenes used in a previous EEG

study [95]. The larger dataset contained scenes from several online databases, including the

INRIA holiday database [96], the GRAZ dataset [97], ImageNet [98], and the McGill Cali-

brated Color Image Database [99]. For each scene, one CE and one SC value was computed by

simulating the output of contrast-sensitive receptive fields and integrating these responses

across the scene by averaging (CE) and divisive normalization (SC). In natural scenes, CE and

SC correlate strongly with parameters of a Weibull function fitted to the distribution of con-

trast values [35,36], which is informative about the degree of scene fragmentation [34]. CE is

an approximation of the distribution width (the scale parameter of the function), informing

about the overall presence of edges in an image, whereas SC is an approximation of its shape

(the degree to which the function describes a power law or a Gaussian distribution), capturing

higher-order correlations between edges. As a result, images with low CE/SC values have

strong ‘Inherent’ figure-ground segmentation, often containing a large (central) object sur-

rounded by a homogenous background (and therefore containing few edges that are spatially

correlated because they belong to the same object), whereas images with high CE/SC values

are more complex, and typically textured or cluttered (with many edges distributed in a Gauss-

ian manner that are uncorrelated); while they can contain large objects, they tend to have a

background consisting of uncorrelated edge ‘noise’ (see also De Cesarei et al., (2017), footnote

4). The model is described in more detail in [37,64].

Here, we used these image statistics to selectively sample scenes with various levels of com-

plexity. We created three conditions: LOW, MEDIUM and HIGH (Fig 1B), whereby each con-

dition was defined by its CE/SC values. For the LOW and HIGH condition, we selected the

lower and upper 25% percentiles of the distribution of CE/SC values in the full stimulus set,

respectively; for the MEDIUM condition, the middle 35% percentile. Each condition consisted

of 160 images, half of which contained an animal. Importantly, target and non-target images

were matched within condition in their CE and SC values such that animal and non-animal

images did not differ from each other in their mean (all t(158) < 0.13, all p> 0.89) or median

values (Wilcoxon rank sum test all z < 0.16, all p> 0.87). Images were randomly selected from

the larger set of scenes solely based on their image statistics and annotations (animal/non-ani-

mal). Animal images contained a wide variety of animals including pets such as dogs and cats

but also wildlife, reptiles and fish. Non-animal images consisted of urban, landscape and

indoor scenes and contained a variety of objects, ranging from vehicles to household items.

Several representative exemplars from each condition are provided in Fig 1C.
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Experimental design. Participants performed the animal vs. non-animal categorization

task in a stop signal paradigm (Fig 1D). Our motivation for using this paradigm was based

on a separate research question inspired by a previous set of studies [56,100], which asked

whether the quality of visual input affects decision-making and response inhibition. However,

analysis of the behavioral data showed scene complexity to only modulate decision-making on

trials without stop-signals [55–58]. Given that the focus of the current study is on detection

performance rather than response inhibition, trials with a stop-signal presentation were

excluded from analysis. Each participant performed 480 trials in total, divided over 2 separate

runs. Each trial lasted 2000 ms and started with a fixation cross of variable duration (500–750

ms jittered with 50 ms intervals), after which a scene (640x480 pixels) was presented for 100

ms. The scene stimuli were back-projected on a 61x36 cm LCD screen that was viewed through

a mirror attached to the head coil at ~120 cm viewing distance using Presentation software

(Neurobehavioral Systems, Albany, CA, USA). There were two trial types: GO and STOP trials.

On GO trials, participants had to indicate whether the stimulus was an animal or non-animal

scene before the trial ended (i.e. at maximum within 1250 ms) by pressing one of two buttons.

They indicated their response using a hand-held button box with the index or middle finger. If

they did not respond in time, a screen displaying the word ‘miss’ appeared for 2000 ms. On

STOP trials a beep signal was presented over the headphones indicating that the participant

had to withhold their response. At the start of the experiment, the time interval between the

stimulus and beep (stop signal delay) was initialized at 250 ms and was adjusted in a staircase

procedure based on the stopping performance [101]). Trials were presented in two random-

ized sequences that were counterbalanced across participants. Overall, 25% of the scenes (60

animal, 60 non-animal) were shown in STOP trials. The same set of scenes was used in the

STOP trials for all participants, and these scenes were excluded from analysis. Thus, all analy-

ses reported here included only the GO trials. For these trials, animal and non-animal scenes

were still matched in their CE and SC values per condition (means: all t(118) < 1.13, all

p> 0.26; medians: all z < 1.10, all p> 0.28).

fMRI data acquisition. BOLD-MRI data was acquired in a single scanning session, over

the course of two runs on a Philips Achieva XT 3T scanner with a 32-channel head-coil located

at the University of Amsterdam, The Netherlands. In each run 255 T2�-weighted GE-EPI

recordings (TR = 2000 ms, TE = 27.6 ms, FA = 76.1˚, SENSE = 2, FOV = 240 mm2, matrix

size = 802, 37 slices, slice thickness 3 mm, slice gap = 0.3 mm) were made. Breathing rate and

heartbeat (using the pulse-oxidization signal recorded from the tip of one of the participant’s

fingers) was measured during fMRI acquisition. In addition, a separate functional localizer

scan was recorded (317 T2�weighted echo-planar images; TR = 1500 ms, TE = 27.6, FA = 70˚,

FOV = 240�79.5�240, matrix size = 962, 29 slices, slice thickness 2.5mm, slice gap = 0.25) in

which participants viewed a series of houses, faces, objects as well as phase-scrambled scenes

while pressing a button when an image was directly repeated (12.5% likelihood). These sepa-

rate localizer scans were used to identify the following regions-of-interest (ROIs): the fusiform

face area (FFA), the parahippocampal place area (PPA) and lateral occipital complex (LOC).

Finally, a 3D-T1 weighted scan (TE = 3.8 ms, TR = 8.2 ms, FA = 8˚, FOV = 2562, matrix

size = 2562, 160 sagittal slices, slice thickness = 1mm) was acquired after the functional runs.

This scan was used to register the functional volumes of each run to the structural brain, after

which they were registered to standard MNI (Montreal Neurological Institute) space.

fMRI analysis: Animal/non-animal categorization. Analysis was performed using FEAT

(FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software LIbrary, www.

fmrib.ox.ac.uk/fsl) and custom Matlab code. The functional data were motion- [102] and slice-

time corrected. A temporal median filter was applied to remove low frequencies, after which

the data was spatially smoothed with Gaussian kernel at a 5 mm FWHM. The preprocessed
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scans were subjected to voxel-wise event-related GLM analysis using FILM [103] by convolv-

ing the onset times of each trial with a double gamma function to model the hemodynamic

response function. We generated explanatory variables (EVs) according to the following con-

ditions: LOW animal, LOW non-animal, MEDIUM animal, MEDIUM non-animal, HIGH

animal, and HIGH non-animal. For these EVs, only correct GO trials were included; STOP,

omission, and error trials were modeled as separate EVs. In addition, heartbeat and breathing

measurements were included in the GLM as nuisance variables. This resulted in an estimate of

the BOLD signal for each EV in each voxel, based on which the following contrasts of interest

were computed: LOW (animal > non-animal), MED (animal> non-animal) and HIGH

(animal > non-animal). As the trial design contained insufficient spacing between trials to

estimate a baseline condition, all analyses were conducted on these differential activity

measures.

fMRI analysis: Localizer scans. The localizer scans were preprocessed for the purpose of

another study conducted within the same experimental session [56]. Again, the data were

motion- and slicetime corrected and prewhitened. In addition, they were spatially smoothed

using a 4mm Gaussian filter and were temporally filtered by means of a high-pass filter

(sigma = 50s). A GLM was fitted with following EVs: for FFA, faces > (houses and objects), for

PPA, houses> (faces and objects) and for LOC, intact images > scrambled images. The result-

ing statistical maps were masked with anatomically-defined regions from the Harvard-Oxford

cortical-structural atlas implemented in FSL. For FFA, these were the temporal occipital and

occipital fusiform gyrus; for PPA, the parahippocampal gyrus and lingual gyrus, allowing

activity to extend posteriorly up to MNI coordinate y = -74; for LOC, the lateral occipital cor-

tex inferior division. Significant voxels within these masks were thresholded at z = 2.3 (FFA

and PPA) or z = 3.0 (LOC). For one participant, neither left nor right LOC could be reliably

identified: the ROI results for LOC are thus based on 22 instead of 23 participants.

Statistical analysis: Behavioral data. Mean RT and accuracy (percentage correct) was

computed for each participant based on the GO trials. Differences in accuracy and RT between

the three conditions (LOW, MEDIUM, HIGH) were statistically evaluated using repeated-

measures ANOVAs. Significant main effects were followed up by two-tailed, post-hoc pairwise

comparisons using a Sidák correction (a variant of Bonferroni correction; [104–106]) at α =

0.05, and the p-values reported in the main text are the Sidák adjusted p-values. Data were ana-

lyzed in Matlab (Mathworks, Natick, MA, USA) and SPSS 22.0 (IBM, Armonk, USA).

Statistical analysis: Whole brain. Whole brain maps were computed by contrasting ani-

mal and non-animal responses for each of the three conditions (LOW, MEDIUM, and

HIGH). The resulting maps were first pooled across runs (fixed effects) and then across sub-

jects (mixed effects using FLAME1 [107];. after which the following contrasts were run: HIGH

(animal > non-animal) > LOW (animal> non-animal); HIGH (animal > non-animal) >

MEDIUM (animal> non-animal); and MEDIUM (animal > non-animal) > LOW

(animal > non-animal). Results were corrected for multiple comparisons using cluster correc-

tion implemented in FSL (z = 2.3, p< 0.05; [108]).

Statistical analysis: ROIs. We additionally examined the contrasts of interest within a pri-
ori defined regions-of-interest (ROIs) derived from the functional localizer scans (see above)

as well as an anatomical mask of V1 derived from the Jülich histological atlas implemented in

FSL [109]. Because initial inspection of the results did not indicate major differences between

hemispheres, all results are reported for bilateral ROIs. T-values obtained for the contrast of

interest were averaged over voxels within each ROI. The resulting averaged activity values

were compared across conditions using one-way repeated-measures ANOVAs. Significant

main effects were followed up by post-hoc pairwise comparisons between conditions with a
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Sidák correction at α = 0.05. Data were analyzed in Matlab (Mathworks, Natick, MA, USA)

and SPSS 22.0 (IBM, Armonk, USA).

Experiment 2 (EEG)

Subjects. Twenty-eight participants (8 males, 19–25 years old, mean = 21.9, SD = 1.9)

took part in the EEG experiment. All participants had normal or corrected-to-normal vision,

provided written informed consent and received financial compensation. The ethics commit-

tee of the University of Amsterdam approved the experiment. Two participants were excluded

in preprocessing: one based on behavior (average RT 2 standard deviations from the group

average) as well as bad EEG quality (excessive muscle tension reflected in the EEG signal as

high frequency noise), and another due to a technical issue which led to duplicate markers

being written into the EEG signal.

Experimental design. Participants viewed the 480 scene stimuli in randomized orders

while performing an animal / non-animal speed-accuracy categorization task on the same

images used for the fMRI experiment (Fig 1E). Stimuli were presented on a 19-inch ASUS

monitor with a frame rate of 60 Hz and a screen resolution of 1920 x 1080 pixels. Participants

were seated 90 cm from the monitor such that stimuli subtended ~14x10˚ of visual angle. On

each trial, one image was randomly selected and presented in the center of the screen on a grey

background for 100 ms. Between trials, a fixation-cross was presented with a semi-randomly

chosen duration of either 350, 400, 450, 500 or 550 ms, averaging to 450 ms. Participants

searched for animals under either speed or accuracy instructions in randomly alternating

blocks that each consisted of 20 trials. Each mini block started with the presentation of an

instruction screen displaying either the words ‘QUICK!’ for speeded blocks, or ‘ACCURATE!’

(in Dutch) for accuracy blocks for a duration of 5000 ms. In addition, before every trial, the

instruction appeared again for 100 ms. Every image was presented twice, once under a speed

instruction, and once under an accuracy instruction. After every 120 trials, participants took a

short break. To exclude effects of response preparation, keyboard buttons were switched half-

way in the experiment. Choices and RTs with respect to the start of the presentation of the

image were recorded. For both instruction types, participants received feedback on their per-

formance. On the speed trials, participants were presented with “too slow” feedback in case

they failed to respond in time (<500 ms), and “on time” when they were quick enough. On the

accuracy trials, participants were presented with “correct” and “incorrect” feedback. Stimuli

were presented using Presentation software (version 17.0, Neurobehavioral Systems, Inc).

EEG data acquisition. EEG was recorded with a 64-channel Active Two EEG system

(Biosemi Instrumentation, Amsterdam, The Netherlands, www.biosemi.com) at a sample rate

of 2048 Hz. The EEG setup was similar to that of our previous studies [37,39,64]. In short, we

used caps with an extended 10–20 layout modified with 2 additional occipital electrodes (I1

and I2, which replaced F5 and F6). Eye movements were recorded with additional electroocu-

lograms (EOG). Preprocessing was done in Brain Vision Analyzer 2 (BVA2) and included the

following steps: 1) offline referencing to the average of two external electrodes placed on the

earlobes; 2) a high-pass filter at 0.1 Hz (12 dB/octave), a low-pass filter at 30 Hz (24 dB/octave),

and a notch filter at 50 Hz; 3) automatic removal of deflections larger than 250 mV (however,

after visual inspection of the removed data segments, this threshold was raised for some partic-

ipants for which data had erroneously been marked for removal due to the presence of high

amplitude blinks, which were corrected for at step 5 below); 4) down sampling to 256 Hz; 5)

ocular correction using semi-automatic independent component analysis (ICA) followed by

visual inspection to identify the components related to eye blinks; 6) segmentation into epochs

from -100 to 500 ms from stimulus onset; 7) baseline correction between -200 and 0 ms; 8)
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automated artifact rejection (maximal voltage 50 μV, minimal/maximal amplitudes -75/75 μV,

lowest activity 0.50 μV); 9), conversion of the obtained ERPs to current source density

responses [110]. For the temporal filtering, phase shift-free Butterworth filters implemented in

BVA2 were used. Median rejection rate across subjects was 94.5 out of 960 ERP trials (min 8

trials, max 486 trials); in total, 13.6% of the data was rejected. After preprocessing, the ERPs

were imported into MatLab (Mathworks, Natick, MA, USA) for statistical analysis.

Statistical analysis: Behavioral data. Choice accuracy and reaction times (RTs) were

computed separately for the speed and accurate blocks. Fast guesses (RTs < 150 ms) or

RTs > 3 standard deviations from the mean were removed before analysis (mean = 2.2%,

SD = 0.9%, min = 0.8%, max = 4.2%). Differences between the LOW, MEDIUM and HIGH

condition were tested using two-factor repeated-measures ANOVAs. Significant main effects

were followed up by post-hoc pairwise comparisons between conditions or tasks using Sidák

multiple comparisons correction at α = 0.05. Data were analyzed in Matlab (Mathworks,

Natick, MA, USA) and SPSS 22.0 (IBM, Armonk, USA).

Drift diffusion modeling. Based on go trial RT distributions of both correct responses

and errors, the formal Ratcliff drift diffusion model (DDM) estimates the speed of evidence

accumulation, ‘drift rate’, the variability of evidence accumulation ƞ, the amount of evidence

needed for a decision (a), the starting point of evidence accumulation (z), and the variability

of this starting point (Sz). Together these parameters generate a distribution of decision

times (DT). However, observed reaction times (RT) are also thought to contain non-stimulus

specific components such as response preparation and motor execution, which combine in

the parameters non-decision time (Ter), and non-decision time variability (St). In general,

DDM assumes that (Ter) simply shifts the distribution of DT such that: RT = DT+ Ter

[44,111,112].

To analyze the RT data of the EEG experiment with the drift diffusion model we used a

recently developed hierarchical Bayesian estimation of DDM parameters (HDDM) imple-

mented in Python (version 0.6.0, see http://ski.clps.brown.edu/hddm_docs/), which allows

the simultaneous estimation of subject and group parameters and thus requires less data per

subject [45]. To gain a deeper insight into how scene complexity affects choice RT, we investi-

gated a model where the speed of information accumulation (v) and the amount of evidence

required to reach a choice (a) were both allowed to vary across the three natural scene condi-

tions (LOW, MED, HIGH). Moreover, because previous work has consistently shown that

participants require more evidence to reach a choice during accurate instruction trials (as

compared to speed trials), evidence requirements (a) was additionally allowed to vary across

‘speed’ or ‘accurate’ instruction trials [113,114]. For this model, three chains of 20,000 samples

were generated from the posteriors. In order to assure chain convergence, the first 5,000 sam-

ples were discarded (burn), resulting in a trace of 15000 samples for each chain. These chains

were then tested for convergence using the Gelman-Rubin statistic, which compares the intra-

chain variance of the model to the intra-chain variance of different runs of the same model. All

chains were converged and all Rhats were close to 1 [115].

Statistical analysis: EEG. For each individual subject we computed the average ERP to

animal and non-animal scenes in each of the three conditions. Following previous EEG studies

on figure-ground segmentation [18,46], ERPs were pooled across a set of occipital and peri-

occipital electrodes overlying visual cortex (O1, O2, Oz, POz, PO3, PO4, PO6, PO7, PO8). Per

condition, difference waves between animal and non-animal scenes were tested against zero

using two-tailed, one-sample t-tests. Difference waves were compared across conditions using

the following two-tailed, paired-samples t-tests: HIGH (animal > non-animal) vs. LOW

(animal > non-animal); HIGH (animal> non-animal) vs. MEDIUM (animal > non-animal);

and MEDIUM (animal > non-animal) vs. LOW (animal > non-animal). Given the large
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number of statistical comparisons, the results were corrected for multiple comparisons across

the two task-instructions, conditions and time-points by means of FDR correction at α = 0.01

using an empirically derived FDR-corrected threshold of q = 0.0014).

To assess the trial-by-trial linear relationship between the EEG amplitudes and drift rate,

we fitted a HDDM regression model [45] to the RT distributions for target and non-target

decisions (referred to as ‘response-coded’ in HDDM), across both speeded and accurate trials,

with LOW, MED and HIGH coded as categorical variables. As the ERP predictor per trial, we

took the average ERP amplitude between the first significant deflection until the peak ampli-

tude of the average HIGH difference wave for speed and accurate trials (220–325 ms). We ran

four separate chains with 20,000 samples. The first 7500 samples were discarded (burn) and

every 10th sample (thin) was concatenated, resulting in a trace of 5000 samples. The model

was tested for convergence using the Gelman-Rubin statistic, which compares the intra-chain

variance of the model to the intra-chain variance of the different runs. All chains were con-

verged and all values were close to 1. Since HDDM uses Bayesian estimation to obtain the pos-

terior probability densities of the regression weights, the p-values for the distributions in Fig 7

were analyzed directly for hypothesis testing. Specifically, the p-value for the significance of

each regression weight reflects the percentage of the posterior probability distribution that

crosses the zero point. The p-value for the test between distribution reflects the percentage of

distribution 1 (e.g., LOW) that crosses the mean of distribution 2 (e.g., MED), see http://ski.

clps.brown.edu/hddm_docs/howto.html#hypothesis-testing.

Supporting information

S1 Fig. Influence of non-animal image content on behavioral and EEG results from Experi-

ment 2. A) Behavioral reaction time and accuracy as a function of complexity (LOW, MED,

HIGH) and task instruction (speeded or accurate) when only including (left) or excluding

(right) non-animal scenes with vehicles, humans and man-made objects (manually annotated).

B-C) Differences in ERP amplitude for animal and non-animal scenes for LOW, MED, and

HIGH complexity scenes, computed with (left) or without (right) scenes with vehicles, humans

and man-made objects, separately for speed (B) and accurate (C) instructions. The ‘with vehi-

cles, humans, objects’ analysis included 51 non-animal trials for LOW, 58 scenes for MED,

and 57 scenes for HIGH; the ‘without vehicles, humans, objects’ analysis included 29 trials for

LOW, 22 trials for MED, and 23 trials for HIGH.

(TIF)
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